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ABSTRACT

This paper discusses briefly the digital and analog synthesis of

several optimum and quasi-optimum minimum-time controls for systems with

real, null, and complex eigenvalues „ Controls are designed using nonlinear

feedback. Examples demonstrate the simplicity of the design.

An example of the control of a nonlinear system is given using a

technique which is effectively a linearization of the system about each

state point on a trajectory. A quasi-optimum minimum-time control is

generated by substituting the nonlinear functions of the states for their

respective linearized characteristics „
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I INTRODUCTION

The purpose of this paper is to demonstrate to the practicing engineer

the simplicity of synthesis of several minimum-time controls. The emphasis

herein is to move quickly from the theory in bang-bang controls to the task

of generating the control functions in terms of the state variables or feed-

back variables

.

The task is to design a physically constrained control which will drive

the state vector from some initial condition to the origin of the state space

in minimum time-

Simple controls using nonlinear feedback are demonstrated . In all of

the examples shown, the problems were simulated on both digital and analog

computers. One of the examples represented the control of a motor with a

digital computer.
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11 Mathematical Development

Pontryagin's Maximum Principle [1 ] enables one to show that a

minimum time control acts at its maximum effort whenever the measure-

ment of the error is above the noise level „

The system to be considered may be described in general form as

x = Fx + Du (1)

or

x - f(x , u) (I)

We will restrict ourselves to linear systems with nonlinear sat-

uration-type control. That is: F is a constant (n x n) matrix, x is an

n-vector representing the error states of the system, D is a constant

vector, and the control, u , is a scalar and is constrained
( |u |^N)

.

From the Maximum Principle we see that u will operate at its max-

imum values. This is easily seen by noting that u appears only linearly

in the Hamiltonian:

H = Ep.f. (maximum) (2)li

where the p. are the adjoint variables given by
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B - -F£ (3)

and the f. are the rows of (l)o To obtain the maximum of H with respect

to u requires that

u = Nsgn (Zd.p.) (4)

One may avoid the task of determining the adjoint variables by gener-

ating the control as a function of the states. This then gives simply a feed-

back control.

A heuristic argument for generating these control functions follows.

We have an initial value-final value extremal problem with a cost function

and a set of differential equations of constraint. Starting at some initial

state x (0) = C , we desire to reach x (T) = 0_ in minimum time. If the

solution to the differential equation is unique there are only two trajectories

passing through the origin for the two values JN of the control. If the

differential equation is of second order, these two trajectories completely

separate the space (phase plane for second order systems). If we can

geometrically describe these trajectories in terms of the state variables

we will have our control function f 2 , 3 ]. This is best seen by examples.



Ill Examples of synthesis of the control functions

Example 1. Two Null Roots

Given:

x =

-o 1-

x +

-o-

u oJ Li J

u (5)

and

x (0) = c , x (T) = 0.

Find u such that

x
3

= dt (minimum) (6)

where u is constrained, |u|^N.

Solution:

The Hamiltonian is

H = P
1
X
2

+ P
2
U + P

3
(7)

The i^aximum of H minimizes (6). This is achieved with

u = Nsgn p (8)



The adjoint variable, p ?
, may be heuristically related to a negative time

solution from the origin. Letting r= -t we have

x, = -j£ <9>

and

x
2
= -Nt (10)

Eliminating the parameter r gives

2

xi=^f (11)

This is the equation for two parabolas with u = ±N. Of interest are

those parts of the parabolas which are associated with trajectories coming

into the origin in forward time. Accomplishing this in (11) and using the

results as the equation of the control function gives

u = -Nsgn[x1+ :I^'] (12)

This is indeed the optimum minimum time feedback control function and

is readily simulated with analog or digital means.

The system with optimum control is shown in familiar block diagram form

in Fig. 1. Fig. 2 shows a typical optimum trajectory in the state space
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FIG. I BLOCK DIAGRAM OF

SYSTEM WITH MINIMUM

TIME FEEDBACK CONTROL.

FIG. 2 OPTIMUM TRAJECTORY FOR

S2 X(S)- U(S)

X|(0)*I.O, X2(0)«0, U»±l



Example 2: A Null and a Real Root

Given:

x =

-o 1-

x +

-o-

u -a- Li J

u (13)

and

x (0) = c x (T) = 0.

Find u such that

x
3

"
'

dt (minimum)

where u is constrained u ^N,

Solution:

Referring to (7) and (8) which will be of the same form here, we shall

move directly to the synthesis of the control function. It is useful to

uncouple the state variables to simplify the geometry of our trajectories

and to be able to treat the states in an orthogonal space. This is ac-

complished by taking a partial fraction expansion on the transfer function

describing each state with respect to the control and assigning a new state

vector component, y., to each eigenvalue, X.. For example let



x = Gy_ (14)

x = u(s) m u(s)

1 s(s+a) 11 s
+ g 12 s+a

(15)

su(s) u(s)

2 s(s+a)
g
21 s

u(s)
g22 s+a

(16)

rl/a -I/an

G =

L 1 J

(17)

-1
ra in

Lo 1 J

(18)

Let us solve the two uncoupled first order differential equations in

negative time (t = -7)0 The first differential equation is

y = -u (19)



which has the solution (for u = N)

Y
x

= Y
1
(O)-Nt (20)

Next the adjoint variable is used as an integrating factor to make the differ-

ential equation exact. We have

y
2
= a y

2
~ u (21 )

—OLT
Multiplying by the adjoint, p(r) = p e and cancelling p gives

o o

d , -olt
x

-olt /ooN^7~(e y
2

) = -e u (22)

Integrating

-err, f
T
l

e y
2

- y
2
(0) = -/ e'

ar
i

or

<rr, r
T
l &(t, -t)

y
2

= y
2
(0)e - / e

Note that we are considering u(t) to be constant over the interval. Finally

we have (for u = N)



y
2
= y

2
(o)e + ^T* 1 ~ e

'

The forward time solution for y is

or

,,
y
2
(0) N

y
2
(s) - "55T * HS5T (26)

y
2

(t) = y
2
(0)e"

aT
+ -^-(1 - e"

aT
) (27)

In negative time from the origin we have

y
x
= -Nt (28)

and

y - -M-(l - e
aT

) (29)

Again eliminating the parameter 7 we obtain the resulting control

u = -Nsgn ^ - -^"(sgn y
2
)ln(l + —^~ \f

2 |)] (30)

The control function described in (30) is immediately ready for digital

simulation. A two term approximation of the log function is taken for analog

synthesis.
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u = -Nsgn a
L
y

l " y
2
+

2N Y
2 '

y
2

(31)

which in terms of the x variables is

u= -Nsgn
[
Xj +^2

l*
2
l] (32)

Figure 3 shows a typical optimum trajectory in the state space,

Example 3: Two Real Roots

Given;

x =

r-0 l-i

L-yjS -y-jSJ

x +

rCh

LU
u (33)

and

x (0) = c , x (T) =

Find u such that

x
3

dt (minimum)

Where u is constrained, lu UN.



Solution;

As before we will uncouple the system

and

and

ate) u(s)

1 (s+y)(s+0) y ll(s+y)
+ g

l2 (s+j3)
x, = utei = g (34)

su(s) _ u(s) u(s)
X
2

:

(s+y)(s+j3)
: g

21 (s+y)
g22 (s+j3)

(35)

giving

where

x = Gy_

G =

jS-y y- |8

J_

y- |8 0-y

(3 6)

G
-1

/5 1

y i

(37)



The solution in negative time from the origin is

r
x
-
~f-( 1 - e

yT
) (38)

and

y
2

=
-J-(

1 - e"
1")

(39)

By eliminating the parameter t , from (38) and (3 9) an expression for

the control function is obtained. For the case of y^fi, this expression is

u = -Nsgn j^-(sgn y^ In (1 + ^-fc^D - -y(s <3n Y$ ln d + "§~^
2

'
} ]

(40)

The control above is readily achieved by digital means. A quadratic ap-

proximation to the log function is readily generated to give control by analog

means. This is (for y< 0)

U = -Nsgn
[y 1
-^-y

1
|y

1
l-y

2
+ ^ry2

|y2 l] wd

which in terms of the x variables is

u = -Nsgn [( 0-y^ - ^"(jfc^ + x^IjSx^ x
2

|+ ^"(y^ +x
2
)|yx

L
+^1] (41')



It should be noted here that whenever the exact control function is approx-

imated, the possibility of chatter motions exist. This is true for controls

described in (31), (32), (41), and (49). The coefficient on the quadratic

term may be adjusted to eliminate this [ 5 ] .

In systems where the ratio of the real roots is an integer or nearly so,

a simple optimum control may be generated. The equivalent of (38) and (39)

expressed as function of time are

r = -f-ln U + -£-!*! I) (42)

or

N/y
r= In (1 + ^~|y

1
|) (43)

and similarly

r= In (l + -g-|y
2

|) (44)

Now let us use the arguments of the logarithms in (43) and (44) to obtain

the control function. This is (for y<j3)

$/y
u = -Nsgn Jsgny^ (l+-^-|

yi
|) - (sgn y

2
) (1 + -^-|y

2
|) ] (45)



where j3/y is an integer or nearly so. Now simply use the binomial expansion

in (45) to obtain

u = -Nsgn |(sgny
1

) Jy 1
|+ 2N '

Y
l

'

+ •''l"^} (46)

For example, let y= 1/2, /3 = 1 . The optimum control which yields identical

switching to the function given in (40) is

u- -Nsgn [y^ + ~\v
l

|- Y
2 _ (46')

Figure 4 shows an optimum trajectory using either (40) or (46°)

Example 4; Two Imaginary Roots

Given?

x =

1

-03

X +
u

and

x (0) - fc , x (T) =

(47)

Find u such that



FIG. 4 OPTIMUM TRAJECTORY FOR

(S+l) (S*0.5) X(S)- U(S)

X,(0)-I.O, (0)-0, U-±l



X
3

= dt (minimum)

where u is constrained, uh^N,

Solution:

It is noted that the zero trajectories are half circles with centers at

( ± ——- , 0). It can be shown [1,4] , that the optimum switching is a set of

tl)

half circles arrayed along the xjr axis. The optimum control function may-

then be described with the aid of a fourier series as

u = -

X
2

Nsgn I

—- + (sgn x)VS] 32
w kir

77 k

sin
*1

2N
(48)

JC 1 / O • • .

A simple and effective approximation for analog simulation is giv en by

u = -Nsgn [^+ 1-016 (sgnx^lsin^xj] (49)

The system is described in Figure 5, with typical trajectory using the above

control function.

Example 5: Control of a second order nonlinear system (Van der Pol) .

Given:
1

x = X + (5 0)

_-l (l-xp_



FIG. 5 OPTIMUM TRAJECTORY FOR

<S
C
«M ) X(S)»U(S)

X,(0)-I.O, X2(0)-0, U-±l



and x (0) = c , x (T) = 0.

Find u such that

X
3

= (minimum)

where u is constrained, |u |^N.

Solutions

The problem is analyzed by taking the solution to the linear problem

[31

x =

-1

1
~~

x +

0"

-2£_ 1

u (51)

and simply let

1
i i ~2 \*

"
2
(1 - X

1
} (52)

For systems with complex roots the states are not completely uncoupled.

However, a transformation is applied which places the real part of the

roots on the main diagonal. Thus (51) is transformed with

1 -£jv

x =

_ l/v _

(53)

*Here x denotes a weighted mean of its present and desired final states.



and

where

giving

Y_
=

i c

Lo vj

- 7177

(54)

Y_
=

-r v

L-i; -CJ

Y_ + u

.. V

(55)

The negative time solution from the origin is

= -1 + £\COS VT (5 6)

It .

Y = e- sin vt (57)

for

u = + 1 and 0<vt<tt



After eliminating the parameter t from (56) and (57), an expression

for the control function is obtained in the neighborhood of the origin

( |x. |< 1 + a , where Of = e ) ,

u = -sgn {(x
x

+ 2£x
]

x + x )sgn x
2

+ 2^ + 0<
2

) + (e
Z
-l)sgn xj (58)

where

z = It arc cos
1 - (x + fx

2
)sgn x .

V 1 " 2(x
!

(59)

Cx
2
)sgn Xj + x^ + 2Cx^

2
+ x*

2
For |x-

|
^1 + a , we may use a linear approximation to the optimum switch-

ing curve. This is simply

u - sgnK + JaL
^r

i(x
i
+ ex2»

+ -^^r
1"59" xJ (60)

The control functions above were checked for various initial conditions

with digital computer simulation.

A quadratic approximation for the small signal control of (58) is

u = -sgn [2(x
l
+ C*

2
) - x |x |

- 2Fx x + :

2 ' 2 ' J
(61)

A control of the form of (58) and (60) is demonstrated in Figure 6„ Also

a typical uncontrolled limit cycle is shown.



FIG. 6 CONTROLLED AND

UNCONTROLLED TRAJECTORIES

FOR VAN DER POL EQUATION

WITH U » 1 I



IV CONCLUSIONS

It is hoped that this rather compact compilation of optimum and

quasi-optimum minimum time control functions may be useful to the practicing

engineer „ The results of control of a nonlinear system using linearization

about each state point in a trajectory were reassuring to the doubtful. The

solutions were all checked against true optimum trajectories by coming from

the origin in negative time with the control satisfying the Hamiltonian (2)„
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